Correction: Patterns of Positive Selection of the Myogenic Regulatory Factor Gene Family in Vertebrates
نویسندگان
چکیده
The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution.
منابع مشابه
Allelic Variation of MYF5 Gene Detected in the Camelus bactrianus
The myogenic factors (MYF) 5 gene has been reported to contribute to muscle growth and development, therefore they are considered as candidate genes for growth and meat quality related traits. The MYF5 gene is expressed during proliferation of myoblasts and comprises 3 exons. To ascertain whether there is any variation in the camel MYF5 gene, we have used a polymerase chain reaction-single stra...
متن کاملGene regulatory networks and cell lineages that underlie the formation of skeletal muscle.
Skeletal muscle in vertebrates is formed by two major routes, as illustrated by the mouse embryo. Somites give rise to myogenic progenitors that form all of the muscles of the trunk and limbs. The behavior of these cells and their entry into the myogenic program is controlled by gene regulatory networks, where paired box gene 3 (Pax3) plays a predominant role. Head and some neck muscles do not ...
متن کاملEffects of in ovo Injection of Zinc Acetate on some Gene Expression Associated with Embryonic Growth and Development, and with Growth and Carcass Characteristics of the Resultant Chicks
This study was conducted in two steps to determine the effects of in ovo injection of zinc acetate (ZAC) on some gene expression associated with embryonic growth and development, and with growth and carcass characteristics of the resultant chicks. In the first step the effect of in ovo injectionofZAC on the expression of insulin-like growth factors (IGFs:IGF-I and IGF-I), myog...
متن کاملGene deletion patterns in non-aflatoxigenic isolates of Aspergillus flavus
Fifteen non-aflatoxigenic strains of Aspergillus flavus, represent a wide range of geographic regions of Iran (six provinces include Fars, Ardebil, Guilan, Golestan, Kerman and Semnan) and vegetative compatibility groups (VCGs), were collected from corn (Zea mays L.), peanut (Arachis hypogaea L.) and pistachio (Pistachia vera L.) soils and kernels, were screened for the presence of aflatoxin bi...
متن کاملLogics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm
Evolutionary origin of muscle is a central question when discussing mesoderm evolution. Developmental mechanisms underlying somatic muscle development have mostly been studied in vertebrates and fly where multiple signals and hierarchic genetic regulatory cascades selectively specify myoblasts from a pool of naive mesodermal progenitors. However, due to the increased organismic complexity and d...
متن کامل